
Online Learning in BitTorrent Systems
Rafit Izhak-Ratzin, Hyunggon Park, Member, IEEE, and Mihaela van der Schaar, Fellow, IEEE

Abstract—We propose a BitTorrent-like protocol based on an online learning (reinforcement learning) mechanism, which can replace

the peer selection mechanisms in the regular BitTorrent protocol. We model the peers’ interactions in the BitTorrent-like network as a

repeated stochastic game, where the strategic behaviors of the peers are explicitly considered. A peer that applies the reinforcement

learning (RL)-based mechanism uses the observations on the associated peers’ statistical reciprocal behaviors to determine its best

responses and estimate the corresponding impact on its expected utility. The policy determines the peer’s resource reciprocations

such that the peer can maximize its long-term performance. We have implemented the proposed mechanism and incorporated it into

an existing BitTorrent client. Our experiments performed on a controlled Planetlab testbed confirm that the proposed protocol 1)

promotes fairness and provides incentives to contributed resources, i.e., high capacity peers improve their download completion time

by up to 33 percent, 2) improves the system stability and robustness, i.e., reduces the peer selection fluctuations by 57 percent, and (3)

discourages free-riding, i.e., peers reduce their uploads to free-riders by 64 percent as compared to the regular BitTorrent protocol.

Index Terms—Peer-to-peer (P2P), BitTorrent, reinforcement learning, foresighted resource reciprocation strategy

Ç

1 INTRODUCTION

PEER-TO-PEER (P2P) content sharing protocols dominate the
traffic on the Internet, and have become an important

part in building scalable Internet applications [1]. The P2P
protocols are used by a variety of Internet applications such
as content distribution, voice over IP, and streaming multi-
media P2P applications [2], [3], [4].

In P2P content distribution systems, fairness among peers
is an important factor, as it encourages peers to actively
collaborate in disseminating content, which can lead to an
improved system performance. However, even BitTorrent
[5], one of the most popular protocols used in P2P content
distribution, does not provide fair resource reciprocation,
particularly for node populations having heterogeneous
upload bandwidths [6], [7], [8]. This is because the Tit-for-Tat
strategy implemented in BitTorrent only exploits a short-
term history for making upload decisions. More specifically,
upload decisions are made based on the most recent
observations of the resource reciprocation. This also implies
that the upload decisions are short backward looking but not
forward looking, i.e., the decisions are not foresighted. Thus, a
peer can keep following the Tit-for-Tat policy only if it
continuously uploads pieces of a particular file to its
associated peers and as long as it receives pieces of interest
in return. However, this is not always feasible, irrespective of
peers’ willingness to cooperate, as they may not always have

pieces of interest to the other peers [9]. Moreover, such
behavior is still perceived as a lack of cooperation for
interacting peers. In addition, it has been shown that
BitTorrent systems do not effectively cope with selfish peers’
behaviors such as free-riding [10], [11], [12], because of their
built-in optimistic unchoke mechanism. While the optimistic
unchoke mechanism enables peers to continuously discover
better peers to reciprocate resources, it can provide a major
opportunity for selfish peers to obtain data without upload-
ing in return. This mechanism may also lead to unfairness in
the system, as it forces high-capacity peers to interact with
low-capacity peers.

Unlike the approaches that use short-term observation
history, reputation-based schemes have been proposed to
overcome the limitations of Tit-for-Tat and optimistic
unchoke mechanisms by exploiting global histories (e.g.,
[13], [14]). However, in order to maintain such a global
history across peers, these approaches require a significant
amount of information exchange among peers, which
increases the communication overhead. Moreover, the
reliability of global history can be unclear as peers may
exhibit different reciprocation behaviors with different
peers. Alternatively, the long-term local (or private) history
of upload behaviors with associated peers is used in several
other reputation-based approaches such as [9], [15], [16].
While these approaches can reduce the communication
overheads, the focus of these systems is still on maximizing
the immediate utility, which may be less desirable than
maximizing the long-term utility, as peers can repeatedly
interact with each other over a long period of time.

In this paper, we model the peers’ interactions in the
BitTorrent-like network as a repeated stochastic game—
repeated interactions (i.e., reciprocating resources) among
several players (i.e., peers) in which a player takes actions
(i.e., unchoke peers) so as to maximize long-term reward (i.e.,
cumulative download rates). The underlying state of the
environment changes stochastically and is contingent upon
the decisions of the players. In our model, peers can adopt an
online learning strategy, specifically, reinforcement learning

2280 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

. R. Izhak-Ratzin is with Palo Alto Networks, 1498 S. Mary Avenue,
Sunnyvale, CA 94087. E-mail: rratzin@paloaltonetworks.com.

. H. Park is with the Department of Electronics Engineering, Ewha Womans
University, 52 Ewhayeodae-gil (11-1 Daehyun-dong), Seodaemun-gu,
Seoul 120-750, Republic of Korea (South Korea).
E-mail: hyunggon.park@ewha.ac.kr.

. M. van der Schaar is with the Electrical Engineering Department,
University of California (UCLA), 58-109 Engineering IV Building, 420
Westwood Plaza, Los Angeles, CA 90095. E-mail: mihaela@ee.ucla.edu.

Manuscript received 16 Nov. 2010; revised 30 July 2011; accepted 24 Feb.
2012; published online 9 Mar. 2012.
Recommended for acceptance by Y. Liu.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2010-11-0678.
Digital Object Identifier no. 10.1109/TPDS.2012.90.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

(RL) [17], [18], to make their upload decisions. By observing
and storing the information about the reciprocation beha-
viors of their associated peers, peers can explicitly consider
the strategic behaviors of peers. The peers applying the RL-
based strategy with this information can estimate their future
expected rewards, and then can determine their best
responses that maximize the long-term future expected
utility. Therefore, the RL-based peer selection mechanism
can replace both the Tit-for-Tat and the optimistic unchoke
mechanisms in the regular BitTorrent protocol. Note that the
RL algorithm enables peers to improve their peer selection
strategies-based solely on the knowledge of their past
interactions, but not based on the knowledge of the complete
reciprocation behaviors of the peers in the entire network.

We implemented our proposed protocol on top of an
actual BitTorrent client, and performed extensive experi-
ments in a controlled Planetlab testbed. The proposed
protocol consists of two main processes, which are the
Learning Process and the Policy Finding Process. The learning
process provides updated information about statistical
behaviors of the associated peers’ resource reciprocation.
The policy finding process computes the peer selection
policy based on the RL. Then, its subprocess, the Decision
Process, determines the associated peers that will be
unchoked and choked during every rechoke period based
on the policy. The proposed algorithm is executed through
policy modifications to existing clients with no changes to
the BitTorrent protocol. Our protocol does not demand full
adoption or sparse adoption of the RL-based peer selection
mechanism (as in [6]) and can be run by any number of
peers in a BitTorrent-like network.

The proposed protocol provides several advantages
compared to the regular BitTorrent protocol.

. It discourages free-riding by limiting uploads to
noncooperative peers.

. It promotes cooperative resource reciprocation
among high-capacity peers.

. It improves the system robustness by minimizing the
impact of free-riding on the contributing peers’
performance.

. It improves the stability of the peer selection
mechanism.

Note that the scope of our protocol is on the support of
streaming (not real-time) data transmission. In this type of
protocol, the requested content needs to be completely
downloaded before it is displayed. Thus, the download
order is not important, but the overall time required for
completely downloading the content is important. Note
that, however, the proposed protocol can be easily adapted
to on-demand media streaming applications using existing
techniques such as [19], [20].

For reader’s convenience, a summary of notations is
provided in Appendix A and related work is studied in
Appendix B of the supplemental material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2012.90.

2 OVERVIEW OF BITTORRENT

In this section, we briefly overview the BitTorrent protocol
[5]. First, before the content distribution process begins, the

content provider divides the possessed data content into
multiple pieces, or chunks. Then, the provider creates a
metainfo file, which contains information necessary to initiate
the content downloading process. The metainfo file includes
the address of the tracker, which plays the role of coordinator
that facilitates peer discovery. A client downloads the
metainfo file before joining a torrent (or swarm)—a group
of peers interested in a particular content. Then, it connects
the tracker to receive a peer set, which consists of randomly
selected peers currently exchanging the same content. The
peer set may include both leechers, peers that are still
downloading content pieces, and seeds, peers that have the
entire content and upload it to other peers. The client can
then connect and exchange (or, reciprocate) its content pieces
with its associated peers—the peers in its peer set.

While reciprocating content pieces, each leecher deter-
mines a set of leechers among its peer set to whom it can
upload its content pieces. The peer selection is determined
by choking mechanisms which determine the choking decisions.
BitTorrent leechers adopt two choking mechanisms: the Tit-
for-Tat resource reciprocation mechanism and the optimistic
unchoke mechanism. The Tit-for-Tat mechanism prefers the
leechers that upload their pieces at the highest rate among
the associated leechers. Specifically, every 10 seconds (or
rechoke period), a leecher checks the current download rates
from its associated leechers and selects the leechers that are
uploading their pieces at the highest rates. Then, the leecher
uploads only to the selected associated leechers, while
choking (i.e., blocking downloads to) the rest of them
during the rechoke period.

The available upload bandwidth is equally divided into
the unchoked peers. The optimistic unchoke mechanism
reserves a portion of the available upload bandwidth to
provide pieces to peers that are randomly selected. The
purpose of this mechanism is to enable the leechers to
continuously discover better peers to associate itself with,
and bootstrap newly joining leechers into the Tit-for-Tat
mechanism. Optimistic unchokes are randomly rotated
among the associated peers, typically once every three
rechoke periods, allowing enough time for leechers to
demonstrate their cooperative behaviors. The number of
unchoked peers (slots) may vary depending on specific
implementation, and it can be fixed or dynamically changed
as a function of the available upload bandwidth.

Seeds deploy different choking mechanisms, as they have
already completed the content download. The most common
implementation is based on a round-robin schedule, which
aims to distribute data uniformly. The round-robin schedule
is also deployed in our implementation. More details can be
found in [21].

3 RL for RESOURCE RECIPROCATION IN

BITTORRENT SYSTEMS

3.1 Overview

Peers in BitTorrent-like systems often make repeated
decisions to select unchoked peers in their dynamically
changing environment. Thus, we model the evolution of the
peers’ interactions across the various rechoke periods as a
repeated stochastic game, which is played over a long period

IZHAK-RATZIN ET AL.: ONLINE LEARNING IN BITTORRENT SYSTEMS 2281

of time. In each time slot (i.e., rechoke period), a peer can

observe the download rates from its associated peers, which
determine the state of the peer. The total download rates in

the state thus can thus be computed, which is the reward for

the state. The peer then decides its own upload bandwidth

allocations to its selected associated peers independently and

simultaneously in each rechoke period. This is the action

selection of the peer. The upload bandwidth decision of the

peer triggers new upload bandwidth allocations of its
associated peers, which determines the next state of the

peer. Thus, the reward and state transition are contingent

upon other peers’ states and actions. These reciprocal

interactions are observed and stored by each peer and are

used in the proposed RL-based approach.

3.2 Formulation of RL-Based Approach

The resource reciprocation among peers can be formally

expressed as a tuple, I;S;A; P ; Rh i, where I, S, A, P , and R

denote the set of peers, the set of state profiles, the set of

action spaces, a state transition probability function, and a
reward function, respectively. For M peers in the game, i.e.,

I ¼ f1; . . . ;Mg, S ¼ S1 � � � � � SM and A ¼ A1 � � � � �AM ,

where Sj and Aj are the state space and action space of peer

j, respectively. A state transition probability, P : S � A �
S ! ½0; 1�, maps a state profile SðtÞ 2 S at time t to the next

state profile Sðtþ 1Þ 2 S at time tþ 1 given the joint action

AðtÞ 2 A. Finally, a reward function, R : S � A ! IRM
þ ,

maps a state profile SðtÞ 2 S at time t, and the joint action

AðtÞ 2 A, to a vector with each element being the reward to

a particular peer. All the previous states, actions and

rewards of the peers in the network are available to the

peers for the RL-based approach. This formulation can be

found in our prior work [22].

3.2.1 State Space of Peer j (Sj)

The state of peer j represents the set of resources received

(i.e., the uploading behavior) from the peers associating

with peer j (denoted by Cj). Thus, this captures the

uploading behavior of its associated peers. The upload
rates from peer i 2 Cj to peer j at time t are denoted by

LijðtÞ. In our implementation, an uploading rate of peer i

observed by peer j is represented by sij 2 f0; 1g, where sij ¼
1 if Lij > �j and sij ¼ 0 otherwise. �j is a predetermined

threshold of peer j.1 Thus, Sj with N associated peers in Cj
is expressed as

Sj ¼ ðs1j; . . . ; sNjÞ
��sij 2 f0; 1g for all i 2 Cj

� �
:

3.2.2 Action Space of Peer j (Aj)

The action of peer j represents the set of decisions on its

peer selection. An action of peer j to peer i, aji, at time t is

defined as ajiðtÞ 2 f0; 1g, where ajiðtÞ ¼ 0 if peer j chokes

peer i and ajiðtÞ ¼ 1 otherwise. Thus, the corresponding

action space of peer j is

Aj ¼ ðaj1; . . . ; ajNÞ
��aji 2 f0; 1g for all i 2 Cj

� �
;

where AjðtÞ 2 Aj denotes an action space at time t. In our
implementation, Nuð� NÞ peers are simultaneously un-
choked and the upload bandwidth Bj of peer j is equally
divided into its associated peers, i.e., an unchoked peer i
obtains LjiðtÞ ¼ Bj=Nu from peer j.

3.2.3 State Transition Probability of Peer j

A state transition probability represents the probability that
an action AjðtÞ 2 Aj of peer j in state SjðtÞ 2 Sj at time t

will lead to another state Sjðtþ 1Þ 2 Sj at time tþ 1. This
can be expressed as

PAjðtÞðSjðtÞ;Sjðtþ 1ÞÞ ¼ PrðSjðtþ 1ÞjSjðtÞ;AjðtÞÞ:

The state transition probability functions can be estimated
based on past interactions, which are stored in a transition
table. While we deploy an empirical frequency based
algorithm to estimate the state transition probability
function (presented in Section 4.2), alternative algorithms
(e.g., [23], [24]) can also be deployed depending on
application-specific implementation constraints such as
implementation complexity, estimation time, estimation
accuracy, etc.

3.2.4 The Reward of Peer j (Rj)

The reward of a peer in a state is the sum of the estimated
download rates from all of its associated peers. The reward
of peer j from state SjðtÞ 2 Sj can thus be expressed as

RjðSjðtÞÞ ¼
X
i2Cj

Lij:

3.2.5 RL-Based Policy (�j)

The policy �j obtained by RL can provide actions AjðtÞ for
peer j in state SjðtÞ at time t, i.e., �j : Sj ! Aj, defined as
AjðtÞ ¼ �jðSjðtÞÞ. These actions enable peer j to maximize
its cumulative discounted expected reward. This is defined
for a peer j in state SjðtÞ at time t ¼ tc given a discount
factor �j as

Rf
j ðSjðtcÞÞ ¼

4 X1
t¼tcþ1

�
ðt�ðtcþ1ÞÞ
j �RjðSjðtÞÞ: ð1Þ

The value of �j may represent the importance of the future
expected rewards and can be determined based on the
peers’ past experiences, reputation of their associated peers,
network conditions, etc. [23], [25]. Therefore, the policy is
deployed as a peer selection algorithm in our implementa-
tion. While the policy �j can be obtained using well-known
methods such as value iteration and policy iteration [18], the
environment dynamics keep changing in practice, and thus,
the policy needs to be updated frequently. This may require
high computational complexity. Hence, it is important to
reduce the complexity of finding the policy, such that the
proposed algorithm can be efficiently deployed.

4 PROTOCOL DESIGN AND IMPLEMENTATION

4.1 Overview

The protocol consists of two main processes running in
parallel, which are the learning process and the policy finding

2282 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

1. While sij 2 f0; 1g in our implementation for low computational
complexity, the granularity of the state can be easily extended.

process. The learning process gathers online information
about statistical behaviors of the associated peers’ resource
reciprocation. As the peers’ reciprocation behaviors are not
foretold, peers are required to construct the transition
function and the rewards of the associated peers. The other
main process is the policy finding process that computes the
policy based on RL and determines the choking decisions.
This process needs to be running during the entire down-
loading process as the changes in peers’ reciprocation
behaviors (identified by the learning process) can result in
the policies obtained in the previous time slots becoming
outdated. Its subprocess, the decision process, determines the
decisions on peer selection in each rechoke period based on
the policy and the observed state. The protocol design is
depicted in Fig. 1.

The proposed RL-based client is implemented on top of
the Enhanced CTorrent client, version 3.2 [26]. We enhance
the original client such that our client can operate in RL-

enhanced mode, where it reciprocates its resources using the
proposed RL-based mechanism, or in regular mode, where it
reciprocates its resources based on the regular BitTorrent
peer selection mechanism.

4.2 The Learning Process

Due to the unannounced information, network scalability
constraints, time-varying network dynamics, etc., each peer
needs to estimate (or learn) the other peers’ states, its rewards
and the state transition probabilities using the past observa-
tions of its competing peers. In the proposed protocol, RL
is deployed. Thus, each peer needs to update the above
information regularly throughout the learning process, while
downloading content from its associated peers.

The learning process consists of two main methods that
compute the estimated reward and the state transition
probability, which is depicted in Fig. 2.

4.2.1 Computing Reward

The reward of peer j is the total estimated download rates
from the peers associating with peer j. Based on the
availability of information about past resource reciprocation
history, different reward calculation methods are applied.

If peers have reciprocated their resources with peer j,
referred to as peers with reciprocation history, peer j estimates
their upload rates based on the weighted average of the past
samples of upload rates. Specifically, peer j estimates the
upload rates Lij of peer i 2 Cj based on recently observed
resource reciprocation Loij as

Lijðtþ 1Þ �j � Loijðtþ 1Þ þ ð1� �jÞLijðtÞ; ð2Þ

where �j denotes the weight for most recent resource
reciprocation, and is set as �j ¼ 0:5 (for more details of �j
and weighted average of the sample in (2), see Appendix C
of the online supplemental material).

If peers have not reciprocated yet their resources with peer
j, which are referred to as peers without resource reciprocation
history, peer j initializes the information about such peers by
optimistically estimating that they will reciprocate their
resources with high probability and high upload rate.
Specifically, the initial estimated upload rate is set to be the
highest upload rate Lmaxij that is predetermined in the P2P
network, i.e.,Lij Lmaxij , and the probability of reciprocation
with j is initiated to 1. This enables peer j to efficiently
discover additional peers and bootstrap newly joining peers,
which can lead to a system performance improvement.

Peer j needs to continue updating the initially assumed
reward in every nonreciprocated event (i.e., peer j uploads
resources to peer i while peer i does not upload resources to
peer j). This provides j with more confidence that the
particular peer may not actively reciprocate its data. This
also prevents the associated peers from taking advantage of
a peer through optimistic initialization and possible free
riding. In our implementation, when peer j estimates the
reward for peer i, peer j can assume for the expected
download rates L̂ij that

i) L̂ij satisf ies L̂ijðn� 1Þ=L̂ijðnÞ < L̂ijðnÞ=L̂ijðnþ 1Þ
where n denotes the number of nonreciprocated
events, and

ii) L̂ijðnÞ decreases exponentially such that it ap-
proaches 0 after several attempts.

Assumption i) means that the ratio of the estimated rate
of two consecutive events is an increasing function of n.
This also implies an increasing uncertainty about peer i’s
reciprocation behavior. Assumption ii) is required to
prevent nonreciprocating behavior including free-riding
(see Appendix D of the online supplemental material for an
implemented function satisfying properties i) and ii)).

Note that white washing [27] is not possible in our
design, because peers are identified by their IP addresses.

4.2.2 Finding State Transition Probability

The state transition probabilities are updated every rechoke
period, and thus, each peer can capture the time-varying
resource reciprocation behaviors of its associated peers.
Every rechoke period at tþ 1, peer j stores 3-bit triplets for
its associated peer i, ðsijðtÞ; ajiðtÞ; sijðtþ 1ÞÞ. Peer j stores the
triplets for its associated peers in its reduced peer set, which
will be discussed later in this section, or peers that uploaded
to peer j at time t or tþ 1. In our design, we compute the

IZHAK-RATZIN ET AL.: ONLINE LEARNING IN BITTORRENT SYSTEMS 2283

Fig. 1. Main processes in the proposed protocol design.

Fig. 2. The learning process.

state transition probability functions based on the empirical
frequency, and assume that the state transitions of each peer
are independent. Thus, the state transition probability
PAjðtÞðSjðtÞ; Sjðt þ 1ÞÞ from SjðtÞ ¼ ðs1jðtÞ; . . . ; sNjðtÞÞ to
Sjðt þ 1Þ ¼ ðs1jðt þ 1Þ; . . . ; sNjðt þ 1ÞÞ given an action
AjðtÞ ¼ ðaj1ðtÞ; . . . ; ajNðtÞÞ can be expressed as

PAjðtÞðSjðtÞ;Sjðtþ 1ÞÞ ¼
YN
i¼1

Prðsijðtþ 1ÞjsijðtÞ; ajiðtÞÞ:

4.3 The Policy Finding Process

The policy finding process runs in parallel with the learning
process, while using the information obtained from the
learning process. This process is depicted in Fig. 3.

The first part of the policy finding process is to find the
peer selection policy. Finding the RL-based policy fre-
quently may require high computational complexity, if the
number of the associated peers becomes large. Specifically,
the number of states and the number of actions for peer j
are both 2N�1 for N associated peers, i.e., jAjj ¼ jSjj ¼ 2N�1.
Thus, the state transition probability storage magnitude is
Oð4NÞ. Moreover, it is known that the computation
complexity required for converging to an optimal policy
increases in the order of OðjAjkSjj2 ¼ 8NÞ [28]. Hence, in
order to practically implement the proposed algorithm, it is
critical to reduce the number of peers that a peer considers
for reciprocation (see Section 3). Therefore, this process
begins with reducing the set of associated peers, and then,
finds policy �j that maximizes the cumulative discounted
expected reward (i.e., in (1)) in the reduced peer set.

The goal of reducing the associated peer set is to select
peers that can reciprocate their resources with higher
probability and with higher upload rates in the reduced
peer set. Specifically, peer j computes the expected rewards
(or download rates) L̂ij from each peer i 2 Cj, defined as

L̂ijðtþ 1Þ ¼ LijðtÞ � Prði) jÞ;

where i) j means that peer i serves peer j and it is
computed by

Prði) jÞ ¼
X
t2T

ajiðtÞ
� X

t2T;ajiðtÞ¼1

sijðtþ 1Þ:

Based on the computed L̂ij, peer j reduces its associated peer
set by iteratively eliminating the peers with the smallest L̂ij
in its associated peer set. Based on our experiments, we have
observed that if the reduced peer set exceeds seven peers,
finding the RL-based policy becomes significantly slow,
leading to severe performance degradation for the RL-
enhanced client. Thus, in our implementation, we set the size

of the reduced peer set to seven (i.e., T ¼ 7 in the algorithm
presented in Appendix E of the online supplemental
material).

The computed policy holds for up to three additional
rechoke periods, which is determined by considering the
tradeoff between the time for enough reciprocation and the
time for capturing the network dynamics. However, this
duration can be adapted. For example, the updating
frequency can be easy reduced to less than 3 rechoke periods
if major changes in the network such as peers joining or
leaving are experienced. Alternatively, the duration can be
more than 3 rechoke periods if there are limited changes
experienced.

4.4 The Decision Process

The decision process is a subprocess that is included in the
policy finding process, and it determines the choking
decisions. The decision process includes two phases, which
are the initialization phase and the RL phase.

4.4.1 Initialization Phase

Since no information about associated peers is available for
a newly joining peer j, peer j begins with adopting the
regular BitTorrent mechanisms (i.e., the Tit-for-Tat mechan-
ism and the optimistic unchoke mechanism) in the
initialization phase. This enables the peer to collect
information such as the rewards and the state transition
probabilities with respect to its associated peers. During this
phase, peer j discovers new peers, i.e., downloads from
peers for the first time. Additional details of how to decide
the duration of the initialization phase are provided in
Appendix F of the online supplemental material.

In our implementation, peer j counts the number of
peers without reciprocation history within every rechoke
period. Once the count is reduced by one in a duration of
three rechoke periods over two consecutive durations (i.e.,
six rechoke periods), peer j switches to the continuous
phase and begins to adopt the RL-based strategy. Based on
our experiments, peers switch from the initialization phase
to the continuous phase after approximately 60 rechoke
periods in the flash-crowd scenarios and after approxi-
mately 36 rechoke periods in the steady-state scenarios.
However, different network settings may lead to different
durations of the initialization phase.

4.4.2 RL Phase

Once a peer switches to the RL phase, it stays in this phase
until the end of the downloading process. In this phase,
peer j determines the decisions on peer selection based on
the policy obtained from the policy finding process in every
rechoke period. Peer j determines its current state Sj and
the corresponding action Aj based on the policy �j, i.e.,
Aj ¼ �jðSjÞ. Note that Aj is a set of decisions on peer
selection of peer j, i.e., either to choke or to unchoke. In our
implementation, the peer selection decisions are made
based on the RL policy every 10 seconds (as in regular
BitTorrent). The selected peers will be unchoked for a
rechoke period of ten seconds. The minimum number of
unchoked peers is four. The number of unchoked peers can
increase if either the upload capacity of a peer that makes
the peer selection decisions is not saturated, or the upload

2284 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

Fig. 3. A policy finding process.

bandwidth of a peer that makes the peer selection decisions
is higher than that of the most peers it interacts with.

5 EXPERIMENTAL RESULTS

5.1 Methodology

All of our experiments are performed on the Planetlab
experiment platform [29], which utilizes nodes (machines)
located across the globe. Unless otherwise specified, the
default implementations of leecher and seed in regular
BitTorrent systems are deployed.

The upload capacities of the nodes are set according to
the bandwidth distribution of typical BitTorrent leechers
[6]. This distribution was estimated based on empirical
measurements of BitTorrent swarms including more than
300,000 unique BitTorrent IPs. Since several nodes may be
incapable of matching the target upload capacities deter-
mined by the bandwidth distribution, we scale the upload
capacity and other relevant experiment parameters such as
file size by 1/20th. However, there is no limitation on the
download bandwidth.

All peers begin the download process simultaneously,
which emulates a flash crowd scenario. The initial seeds
stay and are connected throughout the entire experiment. In
order to provide synthetic churn with constant capacity,
once leechers finish downloading an entire file, they
immediately disconnect their connections from their asso-
ciated peers. Then, they rejoin the network as new comers
while requesting the entire file. This enables our experi-
ments to have the same upload bandwidth distribution for
the duration of the experiment.

Unless otherwise specified, our experiments host 104 Pla-
netlab nodes, 100 leechers, and 4 seeds with a combined
capacity of 128 KB/s, serving a 99 MB file. While the
discount factor is set to 0.8 for the RL-enhanced mode, this
value can be adaptively chosen as illustrated in [23], [25]. In
order to avoid a potentially negative impact which can be
incurred by the unavailability of peers located in the
Planetlab during the experiment, the availability and
unavailability of peers are monitored by recording the
information about their availability in log files maintained
by each peer during the running time of all the experiments.

5.2 Single RL Leecher

In this experiment, only a single leecher adopts the RL-
enhanced protocol, while the rest of the leechers in the

network run with the regular BitTorrent. We assume that
there is no free-rider in the network.2 Fig. 4 shows the
comparison of the download time of a single leecher that is
adopting the RL-enhanced protocol and the other leechers
that are adopting the regular BitTorrent protocol, as a
function of their upload capacities over seven trials.

In Fig. 4, separate boxplots3 are depicted for the different
scenarios. The results in Fig. 4 provide several insights into
the operation of our RL-based protocol. High and low
capacity leechers benefit from the RL-enhanced with 12-
27 percent improvement of their download time perfor-
mance as indicated by the median. This improvement
provides leechers with an incentive to deploy the proposed
protocol. Moreover, the RL-based strategy does not only
improve performance; it also provides more consistent
performance across multiple trials. By unchoking peers
based on the information about the reciprocal behaviors, the
proposed protocol can prevent random behaviors, which
may appear in the regular BitTorrent Tit-for-Tat and
optimistic unchoke implementations, resulting in unstable
peer selections and correspondingly slow convergence.

This shows that the proposed protocol can be selec-
tively deployed by peers (i.e., not all peers in the network
need to adopt the proposed protocol) and also that by
adopting the proposed protocol the performance of these
peers is improved.

We further study the stability of the peer selection
mechanism. The stability of the peer selection mechanism is
closely related to the performance of the system. This is
because when a peer starts to upload to another peer, it
takes time for the peer to reach its full capacity. Thus, it is
preferable to minimize the peer selection fluctuations. The
peer selection fluctuations are measured by comparing
the peer selection decisions during two consecutive rechoke
periods and the difference between the two decisions. Fig. 5
shows the average number of peer selection changes over
several rechoke periods (time) for a single peer. It shows
that the average number of peer selection changes in the

IZHAK-RATZIN ET AL.: ONLINE LEARNING IN BITTORRENT SYSTEMS 2285

Fig. 4. Leecher’s download time.
Fig. 5. Peer selection mechanism dynamics.

2. This is a common scenario tested by other protocols (e.g., [6], [30]).
3. The top and the bottom of the boxes represent the 75th and the 25th

percentile samples, respectively, over all seven experiments. The markers
inside the boxes represent the median, while the vertical lines extending
above and below the boxes represent the maximum and minimum of
samples within the ranges of 1.5 times the box height from the box boarder.
Outliers are marked individually with “þ” mark.

RL-enhanced mode is smaller than that in the regular
BitTorrent mode for the majority of the time. More
specifically, there are 2.1 changes on average in the regular
BitTorrent mode, while there are 0.9 changes on average in
the RL-enhanced mode. Thus, the RL-enhanced peer
selection mechanism is more stable than the peer selection
mechanism in the regular BitTorrent mode, reducing the
fluctuations by 57 percent on average. Note that the
improvement in stability of the peer selection mechanism
mainly stems from replacing the Tit-for-Tat mechanism of
the BitTorrent network with the RL-enhanced mechanism
that performs foresighted unchoking decisions.

5.3 Performance of Leechers without Free-Riders

In this experiment, we compare the performance of the
systems that consist of the leechers, where all of them adopt
either the regular BitTorrent protocol or RL-enhanced
mechanism. In order to highlight the performance of
different systems, we assume that there are no free-riders
in the networks and 50 leechers are hosted. Fig. 6 shows the
download completion time of leechers. For each group of
leechers having the same upload capacity, separate box-
plots are depicted for the different scenarios.

The results show a clear performance difference among
high-capacity leechers (i.e., fastest 20 percent leechers) and
low-capacity leechers (slowest 80 percent leechers). High-
capacity leechers can significantly improve their download
completion time. For example, leechers having the upload
capacity of at least 18 KB/sec (Peer Group Index 8) improve
their download completion time by up to 33 percent in
median. Unlike the leechers in the regular BitTorrent system,
the RL-enhanced leechers determine their peer selection
decisions based on the long-term history. This enables the
leechers to estimate the behaviors of their associated peers
more accurately. Moreover, due to the random peer selection
in the regular BitTorrent, there is a high probability that high
capacity leechers need to reciprocate with the low-capacity
leechers [6]. However, because the random decisions are
made only in the initialization phase or in order to collect the
reciprocation history of newly joined peers, the number of
random peer selection is significantly reduced in the RL-
enhanced mode. As a result, the high capacity leechers
increase their probability to reciprocate resources with other
high capacity leechers. This is confirmed in Fig. 7, which
shows the unchoking percentage among the 20 percent high
capacity leechers.

It is clearly observed that the collaboration among high
capacity leechers improves when the leechers are in the RL-
enhanced mode. Thus, we can conclude that the RL-based
strategy further improves the incentive mechanisms com-
pared to the regular BitTorrent system.

We further study the fairness improvement of the RL-
based approach. Recent studies [6], [7], [15] show that the
regular BitTorrent protocol suffers from unfairness particu-
larly for high capacity leechers. Fig. 8 shows the upload
rates and the average download rates of the leechers. It
implies that the fairness is improved in the RL-enhanced
network, since high-capacity leechers can increase their
download rates as much as their upload rates despite the
restriction of limited seeds’ upload rates. On the other hand,
in the RL-enhanced network, the download rates of low-
capacity leechers decrease by at most 36 percent, compared
to the regular BitTorrent system. However, all the peers that
are slowed down by the RL-based strategy still download
faster than their upload rates.

5.4 Performance of Leechers with Free-Riders

Unlike the above sections, we investigate how effectively the
proposed protocol can prevent selfish behaviors such as
free-riding in this section. Hence, our focus is on studying
how the free-riders are punished because of their selfish
behaviors. Fig. 9 shows the number of free-riders and time
required for free-riders to complete downloading a 99 MB
file in a network consisting of 50 contributing leechers. Fig. 9
confirms that in the RL-enhanced network, the leechers are
able to effectively penalize the free-riders, as it takes longer
time for the free-riders to complete their downloads
(requires 8-20 percent more time in the median compared
to the regular BitTorrent protocol). This is because the RL-
enhanced leechers can efficiently capture the selfish

2286 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

Fig. 6. Download completion time for leechers.

Fig. 7. Unchokes among the 20 percent fastest peers.

Fig. 8. Download rates for different upload rates.

behaviors of the free-riders. Hence, the free-riders down-
load their content mainly from seeds and not from the
leechers. This is also confirmed from the results shown in
Fig. 10, which shows that the leechers in the regular
BitTorrent network upload approximately 2.8-3.7 times
more data to the free-riders compared to the RL-enhanced
network. Fig. 10 also shows that the RL-enhanced network is
more robust against the selfish behaviors of peers than the
network with the regular BitTorrent protocol. For example,
in the network with 15 free-riders, the leechers in the regular
BitTorrent systems upload 4.5 percent of their total upload
capacity to free-riders, while they only upload 1.6 percent of
their total upload capacity in the RL-enhanced network.
Thus, the leechers can reduce the amount of upload capacity
to free-riders by 64 percent

In summary, our experimental results confirm that the
proposed RL-based protocol improves the peer’s download
rates, improves the stability of the peer selection mechan-
ism, improves collaboration among high capacity peers,
improves fairness in the system, and discourages noncoo-
perative behaviors such as free-riding.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a protocol that can replace the Tit-
for-Tat and the optimistic unchoke peer selection mechan-
isms in the regular BitTorrent protocol. In the proposed
protocol, the evolution of the peers’ interactions across the
various rechoke periods is modeled as repeated interactions
in a game. The peers adopt RL to make their upload
decisions while explicitly considering the reciprocation
behaviors of their associated peers. Their decisions enable
the peers to maximize the long-term future expected utility.
Our experimental results based on actual implementation
confirm that the proposed protocol provides several
improvements in terms of the stability of the peer selection
mechanism, collaboration among high capacity peers,
system fairness, the robustness of the network against
noncooperative behaviors, and downloading rates.

As for interesting research directions, the adopted RL
approach can additionally consider application-specific
information, which may improve the performance of the
proposed protocol. For example, the proposed protocol can
be modified such that it supports efficient delivery of delay-
sensitive data (e.g., multimedia streaming services). In this

case, additional information such as delay deadlines (play-
back deadline), video encoding structure, rate-distortion
optimized scheduling, and reciprocation can be taken into
account. The RL can also be deployed to seeders with
modified reward functions as well as state transition
probabilities, which may improve system performance.
Moreover, if a global history in the system is available, the
learning process can be boosted up. Finally, the study on the
robustness of the RL-based approach against strategic
manipulation of associated peers is an important topic of
future research.

ACKNOWLEDGMENTS

The material in this paper was presented in part at the
Thirtieth IEEE International Conference on Computer
Communications (IEEE INFOCOM 2011), Shanghai, China,
April 2011. This work was supported in part by Basic
Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (2012-0002917), in part
by the MKE (Ministry of Knowledge Economy) under the
ITRC (Information Technology Research Center) support
program supervised by the NIPA (National IT Industry
Promotion Agency) (NIPA-2012-H0301-12-1008, NIPA-
2012-H0301-12-4004), in part by the Korea Meteorological
Administration Research and Development Program under
grant CATER 2012-3064, and in part by NSF grant CNS
0831549. The corresponding author is H. Park. This work
was mainly performed while the R. Izhak-Ratzin and the H.
Park were with UCLA.

REFERENCES

[1] IPOQUE, “IPOQUE Internet Measurements 2008-2009,” http://
www.ipoque.com/, 2012.

[2] BitTorrent, “BitTorrent,” http://www.bittorrent.com/, 2012.
[3] “Skype,” http://skype.com, 2012.
[4] “PPLive,” http://pplive.com, 2012.
[5] B. Cohen, “Incentives Build Robustness in BitTorrent,” Proc.

Workshop Economics of Peer-to-Peer Systems (P2PEcon), 2003.
[6] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A.

Venkataramani, “Do Incentives Build Robustness in BitTorrent?”
Proc. Fourth USENIX Symp. Networked Systems Design and
Implementation (NSDI), 2007.

[7] A. Bharambe, C. Herley, and V. Padmanabhan, “Analyzing and
Improving a BitTorrent Network’s Performance Mechanisms,”
Proc. IEEE INFOCOM, 2006.

IZHAK-RATZIN ET AL.: ONLINE LEARNING IN BITTORRENT SYSTEMS 2287

Fig. 9. Download completion time for free-riders. Fig. 10. Percentage of free-riders’ downloads.

[8] A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering and
Sharing Incentives in BitTorrent Systems,” SIGMETRICS Perfor-
mance Evaluation Rev., vol. 35, no. 1, pp. 301-312, 2007.

[9] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson, “One
Hop Reputations for P2P File Sharing Workloads,” Proc. Fifth
USENIX Symp. Networked Systems Design and Implementation
(NSDI), 2008.

[10] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang, “Exploiting
BitTorrent for Fun (But Not Profit),” Proc. Int’l Workshop Peer-To-
Peer Systems (IPTPS), 2006.

[11] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, “Free Riding in
BitTorrent is Cheap,” Proc. Fifth Workshop Hot Topics in Networks
(HotNets-V), 2006.

[12] M. Sirivianos, J.H. Park, R. Chen, and X. Yang, “Free-Riding in
BitTorrent Networks with the Large View Exploit,” Proc. Int’l
Workshop Peer-To-Peer Systems (IPTPS), 2007.

[13] S. Buchegger and J.-Y. le Boudec, “A Robust Reputation System
for P2P and Mobile Ad-Hoc Networks,” Proc. Second Workshop
Economics of P2P Systems, 2004.

[14] L. Xiong and L. Liu, “PeerTrust: Supporting Reputation-Based
Trust for P2P Electronic Communities,” IEEE Trans. Knowledge and
Data Eng., vol. 16, no. 7, pp. 843-857, July 2004.

[15] R. Izhak-Razin, “Collaboration in BitTorrent Systems,” Proc. Eight
Int’l IFIP-TC 6 Networking Conf., 2009.

[16] R. Izhak-Razin, N. Liogkas, and R. Majumdar, “Team Incentives
in BitTorrent Systems,” Proc. 18th Int’l Conf. Computer Comm. and
Networks (ICCCN), 2009.

[17] J. Hu and P. Wellman, “Multiagent Reinforcement Learning:
Theorectical Framework and an Algorithm,” Proc. Int’l Conf.
Machine Learning, 1998.

[18] R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[19] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “BiToS: Enhancing
BitTorrent for Supporting Streaming Applications,” Proc. IEEE
INFOCOM, 2006.

[20] Y.R. Choe, D.L. Schuff, J.M. Dyaberi, and V.S. Pai, “Improving
VoD Server Efficiency with BitTorrent,” Proc. Int’l Conf. Multi-
media, 2007.

[21] H. Park, R.I. Ratzin, and M. van der Schaar, “Peer-to-Peer
Networks - Protocols, Cooperation and Competition,” Streaming
Media Architectures, Techniques, and Applications: Recent Advances,
C. Zhu, Y. Li, and X. Niu, eds. IGI Global, 2011.

[22] R. Izhak-Ratzin, H. Park, and M. van der Schaar, “Reinforcement
Learning in BitTorrent Systems,” Proc. IEEE INFOCOM, pp. 406-
410, Apr. 2011.

[23] H. Park and M. van der Schaar, “A Framework for Foresighted
Resource Reciprocation in P2P Networks,” IEEE Trans. Multi-
media, vol. 11, no. 1, pp. 101-116, Jan. 2009.

[24] E.J. Wegman, “Maximum Likelihood Estimation of a Probability
Density Function,” The Indian J. Statistics, vol. 37, pp. 211-224,
1975.

[25] H. Park and M. van der Schaar, “Evolution of Resource
Reciprocation Strategies in P2P Networks,” IEEE Trans. Signal
Processing, vol. 58, no. 3, pp. 1205-1218, Mar. 2010.

[26] “Enhanced-CTorrent,” http://www.rahul.net/dholmes/ctorrent,
2012.

[27] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, “Free-
Riding and Whitewashing in Peer-to-Peer Systems,” Proc. ACM
SIGCOMM Workshop Practice and Theory of Incentives in Networked
Systems (PINS), pp. 228-236, Aug. 2004.

[28] M.L. Littman, T.L. Dean, and L.P. Kaelbling, “On the Complexity
of Solving Markov Decision Problems,” Proc. Conf. Uncertainty in
Artificial Intelligence, May 1995.

[29] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L.
Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak, “Operating
System Support for Planetary-Scale Network Services,” Proc. First
Conf. Symp. Networked Systems Design and Implementation (NSDI),
2004.

[30] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee, “BitTorrent
is an Auction: Analyzing and Improving BitTorrent’s Incentives,”
Proc. SIGCOMM, 2008.

Rafit Izhak Ratzin received the BS (magna cum
laude) degree in communication engineering
from Ben Gurion University, Israel, the MS
degree in electrical engineering from Tel Aviv
University, Israel, and the MS and PhD degrees
in computer science from the University of
California, Los Angeles (UCLA), in 2000, 2003,
2005, and 2010, respectively. Currently, she is
working for Palo-Alto Networks, CA. Her re-
search interests include distributed systems and

networks with emphasis on applying game theoretical methods as
solution to practical networking and distributed systems problems.

Hyunggon Park received the BS degree in
electronics and electrical engineering from the
Pohang University of Science and Technology
(POSTECH), Pohang, Korea, and the MS and
PhD degrees in electrical engineering from the
University of California, Los Angeles (UCLA), in
2004, 2006 and 2008, respectively. Currently, he
is an assistant professor at the Department of
Electronics Engineering, Ewha Womans Uni-
versity, Seoul, Korea. In 2008, he was an intern

at IBM T.J.Watson Research Center, Hawthorne, NY, and was a senior
researcher at the Signal Processing Laboratory (LTS4), Swiss Federal
Institute of Technology (EPFL), Lausanne, Switzerland, in 2009-2010.
His research interests include game theoretic approaches for distributed
resource management (resource reciprocation and resource allocation)
strategies for multiuser systems and multiuser transmission over
wireless/wired/peer-to-peer (P2P) networks. He was a recipient of the
Graduate Study Abroad Scholarship from the Korea Science and
Engineering Foundation during 2004-2006 and a recipient of the
Electrical Engineering Department Fellowship at UCLA in 2008. He is
a member of the IEEE.

Mihaela van der Schaar is chancellor’s professor of electrical
engineering at University of California, Los Angeles (UCLA). She is a
distinguished lecturer of the Communications Society for 2011-2012, the
editor-in-chief of IEEE Transactions on Multimedia and a member of the
Editorial Board of the IEEE Journal on Selected Topics in Signal
Processing. Her research interests include dynamic multiuser networks
and system designs, online learning, network economics, and game
theory, multimedia networking, communication, processing, and sys-
tems, and multimedia stream mining. She received an NSF CAREER
Award (2004), the Best Paper Award from IEEE Transactions on
Circuits and Systems for Video Technology(2005), the Okawa Founda-
tion Award (2006), the IBM Faculty Award (2005, 2007, 2008), the Most
Cited Paper Award from EURASIP: Image Communications Journal
(2006), the Gamenets Conference Best Paper Award (2011) and the
2011 IEEE Circuits and Systems Society Darlington Award Best Paper
Award. She received three ISO Awards for her contributions to the
MPEG video compression and streaming international standardization
activities, and holds 33 granted US patents. She is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2288 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

